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Abstract

In modern supervised learning, there are domains like medical imaging or robotics where
a large number of tasks is available but many of them are associated with a small amount
of data. With few datapoints per task, learning them in isolation would give poor results.
In this thesis, we consider the problem of learning from a sequence of regression or clas-
sification tasks with small sample size. By exploiting their similarities we seek to design
algorithms that can utilize previous experience to rapidly learn new skills or adapt to new
environments.

Inspired by human ingenuity in solving new problems by leveraging prior experience,
Meta Learning is a subfield of Machine learning whose goal is to automatically adapt a
learning mechanism from past experiences to rapidly learn new tasks with little available
data. Since it ”learns the learning mechanism” it is also referred to as learning to learn.
Numerous formulations exist for Meta Learning and we focus on the problem of sequential
Meta Learning or Online Meta Learning where the tasks arrive one at a time and the goal
is to efficiently transfer information from the previous tasks to the new ones such that we
learn the new tasks fast. Each task is in turn processed online. To sum up, we have a
stream of tasks and for each task a stream of observations.

For each online task, diverse well-established algorithms exist, Perceptron, Online
Ridge regression, Online Mirror Descent, Follow-The-Regularized-Leader, Bayesian Infer-
ence etc. We refer to them as the within-task algorithms. The big challenge is to design a
meta mechanism that uses past experiences to adapt a within-task algorithm to perform
better on the next tasks. Placing ourselves in a Bayesian context, we treat each inner task
as a Bayesian problem and solve it using a brand-new tool from the approximate Bayesian
inference toolbox: Generalized Variational Inference. The Bayesian principle gives
us a natural way to transfer information between the tasks, the meta algorithm learns to
adapt the prior. For the Bayesian community, a prior is a representation of the informa-
tion we have on a specific task before seeing the data. Having multiple datasets, once a
new dataset arrives we incorporate all the information we have from the previous tasks
into the prior that serves to treat the new task. In practice, depending on the choice of
prior and Variational Inference algorithm, it boils down to a strategy that automatically
learns some hyperparameters e.g. a starting point or a learning rate.

In contrast to the increasing attention received by deep Meta Learning, we focus on
simpler models — that is, convex models — to derive a theoretically grounded approach
of Meta Learning. Exploiting the connections between Online Convex Optimisation and
Online Variational Inference we show how to get a meta learning strategy guided by
Bayesian principles that comes with a regret bound.
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Mathematical Notations and
Abbreviations

Symbols

X ⊆ Rp input space

Y ⊆ R label space

W ⊆ Rd decision space in online learning, equipped with a σ−algebra T
P(W) set of all probability distributions on (W , T )

` :W → R+ a loss, indexed by t in online learning and by t, i in the meta version

Z ∈ (X × Y)n a dataset (also called a task when equipped with a loss)

RT regret after T steps

Operators

f ∗ Fenchel transformation also known as convex conjugate

‖.‖∗ Dual norm

Abbreviations

OCO Online Convex Optimisation

EWA Exponentially Weighted Aggregation

OGD Online Gradient Descent

OMD Online Mirror Descent

NGD Natural Gradient Descent

FTRL Follow-The-Regularized-Leader

VI Variational Inference

GVI Generalized Variational Inference

NGVI Natural Gradient Variational Inference
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Chapter 1

Introduction

The field of Machine Learning traditionally focuses on learning a single task (on a single
dataset). When a new task arrives, it is common to train another algorithm from scratch.
Humans, on the other hand, do not learn to perform tasks in isolation, they leverage past
experiences in order to learn new tasks as efficiently as possible. The idea of Learning
to Learn was born to alleviate this gap Baxter (1998), Thrun and Pratt (2012). As the
definitions differ from one author to the other we start by giving a definition of Learning
to Learn also known as Meta Learning. Given a family of tasks, Meta Learning is
the process of improving a learning algorithm with the number of tasks. In contrast,
given a task, standard Machine Learning methods design the process of improving model
predictions over multiple data instances Hospedales et al. (2020). Hence the term ”meta”,
it is a supplementary layer on top of standard Machine Learning. In this context, the
algorithm involved in achieving good accuracy on a specific task is called a within-task
algorithm while the algorithm involved in adapting the within-task algorithm to perform
well on a set of tasks is called the meta algorithm. The main difficulty is to design a meta
objective to train the meta algorithm, a minimum requirement should be that the within-
task algorithms learn quicker than if they have learned the tasks independently, i.e., we
have adaptation. The ideal area of application for Meta Learning is when one has access
to different datasets, more or less similar, that contain few observations each. Learning
them in isolation should be a dead end as the number of observations is low. Taking
advantage of the similarity between the tasks, Meta Learning should help to improve the
performance of the entire learning system. Overall, the goal of Meta Learning is to achieve
rapid adaptation and flexibility. It is seen as a critical problem for the future of Machine
Learning Chollet (2019).

Until recently, the majority of the research work focused on the Multi-Task Learning
problem and the batch Meta Learning problem. With the former, a finite number
of tasks are presented in one batch to the learner. The latter is slightly different, it
assumes that some tasks are independent and identically distributed from a fixed meta
task distribution. The tasks are also treated in batch. For researchers interested in the
development of algorithms that can learn like living beings, it might be unsatisfying as
living beings learn from a constant stream of data, we say that they learn online. Online
learning offers an appealing theoretical framework that takes into account the sequential
and non-stationary aspects of learning problems Shalev-Shwartz et al. (2012). The set of
works on the theoretical study of Meta Learning in the online setting is more recent and is
the heart of the project. We focus on what is called the Online-Within-Online setting
Denevi et al. (2019b): a stream of tasks are presented one at a time to the learning system
and the data within each task are also processed sequentially. An alternative approach is
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Online-Within-Batch where the tasks arrive sequentially but the data inside the tasks
are treated in batch.

In this study, we motivate and present a principled and theoretically grounded meta
strategy, where the meta learner uses past experiences to sequentially learn a good prior
that allows the within-task learner to quickly adapt to the next tasks. While the search for
theoretical guarantees forces us to consider simple — i.e. convex — models and does not
translate directly to state-of-the-art models such as deep neural networks, we believe that
the results should hold for non-convex models. Theoretical guarantees (regret bounds) for
Online Meta Learning have been introduced in Alquier et al. (2017) where they learn a
two-parts hierarchical representation with an Exponential Weighted Aggregation strategy.
EWA can learn a posterior distribution in an online fashion but it requires to store all the
datasets. Moreover, the convergence of the Monte Carlo algorithms used to compute it in
practice is slow, especially in high dimension. It is therefore not practical for large models.
A frequentist approach has been suggested by Denevi et al. (2019b) (as a generalisation
of Denevi et al. (2019a)). Exploiting a Primal-Dual view of Online Mirror Descent they
propose a bi-level online optimisation scheme that is fast and computationally cheap.
The approach is close to Finn et al. (2019) where the authors suggest a strategy to learn
a good starting point for a gradient descent algorithm with Meta Learning, this is also
called fine-tuning.

The aim of the thesis is to use an approximation of EWA called Generalized Variational
Inference to obtain a strategy that will combine the computational efficiency of Denevi
et al. (2019b) and the advantages of Bayesian posterior as in Alquier et al. (2017) and
this with theoretical guarantees. Variational Inference Khan and Nielsen (2018), Khan
and Rue (2019) is known to perform approximate Bayesian Inference at scale and works
extremely well in practice Khan et al. (2018). It led to the first scaling of Bayesian
principles to state-of-the-art neural networks Osawa et al. (2019). The difficulty is to
show that we can adapt and extend the analysis of Denevi et al. (2019b) to the variational
setting. By employing a Variational approach instead of a frequentist one we learn a
distribution over the inner parameters and a prior common to the tasks, we can therefore
perform uncertainty estimations. Intuitively, with Bayesian Inference, a prior is used to
incorporate all the information we have on the problem before seeing the data. In Meta
Learning, we have several tasks and it is natural to ask how we could incorporate this
knowledge as prior information for the new tasks. Learning to calibrate the prior with
Meta Learning helps the inner algorithms to converge faster, especially if we have a large
number of tasks with few observations. In practice, our method is more general than the
fine-tuning approach as it can learn other hyperparameters such as learning rates.

We notice that there are slightly different learning settings close to Meta Learning. The
term few-shot learning can be equivalent to Meta-Learning but is usually associated
with deep Computer Vision of Neural Language Processing tasks. The goal is to discrim-
inate between N classes with K examples of each, K is typically small. In the extreme
case of one-shot learning, K = 1. A recent example of large scale few-shot learning
experiment is the GPT-3 model trained with 175 billion parameters Brown et al. (2020).
Meta Learning mainly focuses on learning new tasks fast but can suffer from catastrophic
forgetting Kirkpatrick et al. (2017), the goal of continual learning Pan et al. (2020) is to
overcome this limitation and train algorithms that can maintain expertise on tasks which
they have not experienced for a long time. Finally, Meta Learning also shares similarities
with transfer learning, lifelong learning and federated learning.

Chapter 1. Introduction 7



Master’s Thesis 1.1. Notations for Online Learning and Meta Learning

1.1 Notations for Online Learning and Meta Learn-

ing

In this section, we introduce the Online Convex Optimisation (OCO) framework, the
notion of regret and its meta generalisation. The main advantages of online learning over
standard statistical inference is that it does not make any assumption on the data such
as independence or stationarity. It relies on convex optimisation and therefore makes
instead assumptions on smoothness and strong convexity. The obtained regret bounds
can be converted to statistical guarantees under the standard statistical assumptions with
the online-to-batch technique.

Convex Online Optimisation The goal of online learning is to learn how to make
good decisions given a stream of data. The stream of data is denoted as Z = (zi)

n
i=1. We

consider a loss `(zi, w) ∈ R+, w ∈ W where W ⊆ Rd is a convex decision space. We use
the shorthand `i : w 7→ `(zi, w) and assume that `i is convex for all i ∈ {1, . . . , n}. At
each step, the decision is denoted by wi and is a function of (zj)

i−1
j=1. `i(wi) measures how

good is the decision wi at step i. For example, in classification or regression, we consider
an input space X , an output space Y , and Z = (xi, yi)

n
i=1 ∈ (X ×Y)n is the set of input-

label pairs. The decision space is the parameter space of a prediction function fw. In the
former `i(w) = (1− yifw (xi))+ is the hinge loss and in the latter `i(w) = ||yi − fw (xi) ||22
is the mean squared error loss. We can consider other settings such as Prediction With
Expert Advice, Online ranking, unsupervised learning etc. The dataset Z is processed
sequentially, at each step i ∈ {1, . . . , n} :

(a) a datapoint zi is observed

(b) the algorithm outputs a decision wi ∈ W

(c) the learner incurs the error `i (wi)

We refer to the algorithm used to solve this problem as a within-task algorithm. In
online learning, the notion of generalisation error is not valid, the natural metric to assess
the performance of an algorithm is the regret:

Rinner(Z) :=
n∑
i=1

`i (wi)− inf
w∈W

n∑
i=1

`i(w). (1.1)

It is called a ”regret” as it measures how much we regret not having followed the best
decision in hindsight. The first term in the right-hand side is the cumulative error incurred
by the algorithm. The algorithm should be chosen so that it admits a low regret on the
task, i.e. a regret in O(n).

Online Meta Learning Online Meta Learning is a two layers generalisation of online
learning. We consider a series of tasks indexed by t = 1, · · · , T : Zt = (zt,i)

n
i=1. For each

dataset, the input space, the output space and the loss are the same. We also assume
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1.1. Notations for Online Learning and Meta Learning Master’s Thesis

for simplicity that each dataset contains the same number of points. To solve each task,
we select a within-task algorithm among a family of algorithms parametrised by a meta
parameter θ ∈ Θ. The goal is to adapt θ to the sequence of learning tasks. The sequential
process mimics the standard online learning process where at each step, the loss is the
cumulative loss suffered by the current within-task algorithm. We use the shorthand
`t,i : w 7→ `(zt,i, w) to highlight the link with the task t and the piece of information i
inside this task. For each task t ∈ {1, . . . , T},

(a) the meta-learner incrementally receives a task dataset Zt

(b) it runs the within-task online algorithm with meta-parameter θt on Zt, returning
the predictor vectors

(
wθti
)n
i=1

(c) it incrementally incurs the errors `t,i
(
wθti
)
, i = 1, . . . , n

(d) the meta-parameter (and consequently, the within-task algorithm) is updated to
θt+1

The overall process is illustrated in Figure 1.1. The algorithm we use to select the meta
parameter is called the meta algorithm. Its performance is evaluated by the meta
regret:

Rmeta

(
(Z)Tt=1

)
:=

T∑
t=1

n∑
i=1

`t,i
(
wθti
)
− inf

w1,...,wT∈W

T∑
t=1

n∑
i=1

`t,i(wt). (1.2)

For illustration, let us consider a simple example, we have a sequence of linear regression
tasks with true parameters θ∗1, . . . , θ

∗
T and their parameters are close to each other, e.g.

there exists an Euclidean ball with center θ∗ and radius r such that for all t ∈ [T ],
θ∗t ∈ B(θ∗, r). The smaller the radius, the closer the regression tasks are to each other.
It might be easier to learn a common ”bias vector” i.e. the center θ∗ than learning
the regression tasks individually. If we use a Stochastic Gradient Descent to solve the
regression tasks, we can initiate the descent at the bias vector and it should converge
faster. This bias vector can be seen as a hyperparameter for the linear regression solver
and the question we want to answer is: how to learn θ∗? Solving this problem in high
dimension in the context of personalised feature selection for medicine setups has been
recently used Yamada et al. (2017).

Chapter 1. Introduction 9



Master’s Thesis 1.2. Outline of the Thesis

1.2 Outline of the Thesis

The remainder is organised as follows. In Chapter 2, we present the class of within-
task algorithms we use inside the meta process, the Generalized Variational Inference
(GVI) family. The necessary background on Variational Inference (VI) and Online Convex
Optimisation (OCO) is introduced. We present GVI and connect it to the OCO framework
to derive a first regret bound for the within-task algorithms. In Chapter 3, we derive a
general meta strategy and its meta regret bound. We formalise the idea of learning a prior
and present a solution based on a Primal-Dual analysis of Online Learning. Chapter 4
introduces a practical algorithm in the Gaussian setting which boils down to a bi-level
gradient descent where the meta level learns the starting point and the learning rate
(coordinate-wise) for the inner descent. We discuss future work and conclude the thesis
in Chapter 5.

Within-task alg. fθ1(w)
Update w

z1,1

w
θ1
2−−→ z1,2

w
θ1
3−−→ . . .

w
θ1
n−−→ z1,n

Within-task alg. fθ2(w)
Update w

z2,1

w
θ2
2−−→ z2,2

w
θ2
3−−→ . . .

w
θ2
n−−→ z2,n

...
Within-task alg. fθT (w)

Update w

zT,1
w
θT
2−−→ zT,2

w
θT
3−−→ . . .

w
θT
n−−→ zT,n

Task Z1: (z1,i)
n
i=1 Task Z2: (z2,i)

n
i=1 Task ZT : (zT,i)

n
i=1

Meta alg. update θ1 → θ2 θ3 θT

Figure 1.1: Illustration of the meta process for regression or classification. {fθ(w) : θ ∈
Θ, w ∈ W} is a class of within-task predictors parametrised with meta parameters θ and
inner parameters w. For all θ ∈ Θ and w ∈ W , fθ(w) : X → Y . The meta learner
updates the meta parameters θ ∈ Θ such that the inner parameters can be trained to
quickly achieve good performance on any task.

.
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Chapter 2

Generalized Variational Inference for
the within-tasks

Many algorithms are available to solve a machine learning task in the online setting: Ex-
ponentially Weighted Aggregation (EWA), Online Gradient Descent (OGD), Follow-The-
Regularized-Leader (FTRL), Online Mirror Descent (OMD) and Variational Inference.
EWA has the advantage that it can sequentially build a posterior distribution over the
parameters of the model rather than just computing a point estimate. However, it is not
tractable for non-finite parameter spaces and necessitates the use of MCMC algorithms
that can be slow in high dimension or when the sample size is large. Variational Inference
is an approximation of EWA that can scale well with the dimension while retaining con-
vergence guarantees in both the batch setting Alquier et al. (2016), Alquier et al. (2020)
and the online setting Chérief-Abdellatif et al. (2019), Alquier (2020). For those reasons,
scalability and computation of an approximate posterior distribution, VI will be the main
algorithm of study in this thesis and this chapter is devoted to its introduction. We will
show how we can build a regret bound for Online VI by treating it is a special case of
Follow-The-Regularized-Leader and studying its Online Mirror Descent counterpart as
done in Shalev-Shwartz et al. (2012).

In the first section, we start by introducing the EWA strategy as a generalization of
the standard Bayesian posterior in statistical modelling. Then, we present Variational
Inference as a tractable approximation of EWA and how it can be further extended by
allowing another regularisation than the Kullback-Leibler divergence. This last version
has been recently investigated under the name Generalized Variational Inference (GVI )
Knoblauch et al. (2019), Alquier (2020) and is the one used in our algorithms.

In the second section, we connect GVI to two standard algorithms in Online Convex
Optimisation (OCO): FTRL and OMD. This connection was done in Chérief-Abdellatif
et al. (2019) and led to the first regret bound for Online Variational Inference. We conclude
with the inner algorithm that we will apply on the within-tasks and give its regret bound.
The meta-algorithm will be the focus of the next chapter.

11



Master’s Thesis 2.1. Generalized Variational Inference

2.1 Generalized Variational Inference

2.1.1 General Bayes (EWA)

In this chapter, we consider a single task and drop the dependency in t in all the manip-
ulated variables. We consider a sequence of losses `i : W → R for i = 1, . . . , n as in the
introductory chapter. Instead of learning a fix parameter wi at each step we are interested
in the problem of learning a posterior distribution ρi. Our prediction can then be made
drawing wi ∼ ρi. The Exponentially Weighted Aggregation (EWA) strategy starts
from some prior π on the parameter space Rd (for simplicity we assume that W = Rd)
and updates a probability distribution at each online round,

ρ1(dw) = π(dw)

ρi(dw) =
exp

(
− 1
λ

∑i−1
j=1 `j(w)

)
π(dw)∫

Rd exp
(
− 1
λ

∑i−1
j=1 `j(v)

)
π(dv)

, i = 2, . . . , n.
(2.1)

This strategy is also called Generalized Bayes and ρi a generalized posterior distribution
(also called Gibbs posterior). It is called ”generalized” as we do not assume the existence
of an underlying statistical model. Therefore, ρi might not be a posterior distribution as
defined in the standard Bayesian framework. Given a statistical model, i.e. a family of
densities {pw, w ∈ Rd} with respect to some reference measure ν on some space X , and
i.i.d random variables X1, X2, . . . , drawn from some probability distribution p on X 1, if
λ = 12 and the loss functions are `i(w) = − log pw(Xi), ρi is the posterior distribution of
w given X1, ..., Xi−1 used in Bayesian statistics:

ρi(w) ∝
i−1∏
j=1

pw(Xj)π(w), i = 2, . . . , n. (2.2)

While we do not assume that such a statistical model exists we still refer to π as a ”prior
distribution”, to ρi as a ”posterior distribution” and to our approach as ”Bayesian”. The
expected regret of EWA is in O(

√
n) under the assumption that the losses `i are uniformly

bounded. If in addition the `i are convex we get a uniform regret bound also in O(
√
n).

For the sake of completeness, both bounds are stated in the Appendix A.2, Theorem A.1.
Despite this guarantee, in practice, computing the normalising constant in eq. (2.1) can
be challenging. For large models, it necessitates to run MCMC algorithms known to be
slow in high dimension. The Online Meta Learning problem has been previously treated
with just EWA in Alquier et al. (2017) but they suffer a high computational cost and
running the algorithm requires to store all the previous datasets.

1If p is not in {pw, w ∈ Rd} the model is mis-specified but the likelihood still exists.
2If λ 6= 1, it is called a tempered likelihood, and it might be more robust to mis-specification than the

standard likelihood Bhattacharya et al. (2019).

12 Chapter 2. Generalized Variational Inference for the within-tasks



2.1. Generalized Variational Inference Master’s Thesis

2.1.2 From EWA to Variational Inference

We saw in the previous section that EWA is a first solution to approximate a posterior
distribution in the online setting. The main difficulty being the computation of a poten-
tially high dimensional integral. The next lemma shows how to convert this integration
problem into an optimisation one Catoni (2004), Guedj (2019).

Lemma 2.1. (Donsker-Varadhan representation) Equation (2.1) can be rewritten as,

ρi = argmin
ρ∈P(Rd)

{
i−1∑
j=1

Ew∼ρ [`j(w)] + λKL(ρ, π)

}
, (2.3)

where P(Rd) is the set of all probabilities on Rd and KL is the Kullback-Leibler divergence
(Definition A.5).

Proof. Let ρ ∈ P(Rd) such that ρ is absolutely continuous with respect to π,

Ew∼ρ

[
i−1∑
j=1

`j(w)

]
+ λKL(ρ, π) = λEw∼ρ

[
1

λ

i−1∑
j=1

`j(w) + log

(
ρ(w)

π(w)

)]

= λEw∼ρ

[
log

(
ρ(w)

π(w)e−
1
λ

∑i−1
j=1 `j(w)

)]

= λEw∼ρ
[
log

(
ρ(w)

ρi(w)

)]
− log

∫
Rd
e−

1
λ

∑i−1
j=1 `j(v)π(dv)︸ ︷︷ ︸

:=c

= λKL(ρ, ρi)− c.

Where c does not depend on ρ. Since KL(ρ, ρi) ≥ 0 and KL(ρ, ρi) = 0 if and only if
ρ = ρi (Proposition A.5), the unique distribution which achieves the minimum of the
right-hand side in eq. (2.3) is the Gibbs posterior given by eq. (2.1).

Unfortunately, solving the optimisation problem in eq. (2.3) is usually as infeasible as
computing the normalisation constant in eq. (2.1). The idea of Variational Inference
is to approximate ρi by constraining eq. (2.3) to a tractable set of probability distributions
Q ⊂ P(Rd). Then, ρ̂i ≈ ρi where,

ρ̂i = argmin
ρ∈Q

{
i−1∑
j=1

Ew∼ρ [`j(w)] + λKL(ρ, π)

}
. (2.4)

The richer the family, the closest it is to the full EWA update. If ρi belongs to the
variational family we retrieve the same update. If the family of distributions is ”simple”
in the sense that the problem is tractable and the derived algorithms lead to closed form
updates we can efficiently perform approximate Bayesian updates. Different choices for
Q lead to a wide range of different VI variants. The two most used are mean field VI
and parametric VI (see Chapter 10 in Bishop (2006)). In the former, we assume that the
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distributions in Q factorize with respect to predefined groups, in the latter, we consider
an identifiable parametric family Q = {qµ, µ ∈M ⊆ Rp} and we approximate ρi with qµi
where,

µi = argmin
µ∈M

{
i−1∑
j=1

Ew∼qµ [`j(w)] + λKL(qµ, π)

}
. (2.5)

In Chapter 4, we will consider a combination of both: Gaussian Mean Field VI. For the
remainder of the thesis we only consider parametric VI eq. (2.5). Despite the approxi-
mation, for parametric VI under convexity assumptions, we will see later that a regret
bound similar than the one for EWA can be proved.

We have already taken two steps away from standard Bayesian inference: first, the `i’s
do not necessarily come from a statistical model, secondly, we do not minimize on the
entire set of probability distributions. In the next section, we take a third step away by
considering other divergences than the Kullback-Leibler divergence.

2.1.3 Generalized Variational Inference

The use of a different divergence than the Kullback-Leibler divergence for EWA and its
variational approximation has been suggested at several places, Reid et al. (2015), Alquier
and Guedj (2018), Knoblauch et al. (2019), and recently studied in the context of Online
Learning in Alquier (2020). If there is no underlying statistical model, there is no obvious
reason to stick to the Kullback-Leibler divergence. For example, in the standard EWA
algorithm, the regret bound holds under the assumption that the losses are uniformly
bounded, but using a chi-2 divergence, this restriction is substituted with the assumption
that the second moments under π of the `i’s are uniformly bounded, which is far less
restrictive (Example 2.2 in Alquier (2020)). For us, the use of a different divergence will
be necessary to get a practical algorithm in Chapter 4 as the KL divergence does not
satisfy all the required hypothesis regarding convexity.

Instead of the KL term we consider any divergence D, that is, a function of ρ and π with
values in [0,+∞], satisfying: D(ρ‖π) ≥ 0 with equality if and only if ρ = π, and when ρ is
not absolutely continuous with respect to π,D(ρ‖π) = +∞. The following generalization
of the EWA strategy,

ρi = argmin
ρ∈P(Rd)

{
i−1∑
j=1

Ew∼ρ [`j(w)] + λD(ρ, π)

}
, (2.6)

admits a regret bound if D satisfies a strongly convex condition and the `i’s a Lipschitz
condition in expectation (Alquier (2020), Theorem 2.1). In a similar way to what has
been done previously with Variational Inference, we consider a Generalised Variational
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Inference (GVI) update where we replace the KL term by any divergence D.

µi = argmin
µ∈M

{
i−1∑
j=1

Ew∼qµ [`j(w)] + λD(qµ, π)

}
. (2.7)

We stress that the three parts that now differ from standard Bayes are the divergence
D which might not be KL, the loss ` which might not be the negative log-likelihood of
a statistical model and the set Q over which we minimise. For a fixed prior and a fixed
sequence of losses, the algorithm is fully characterised by the triplet (`,Q, D). This idea
of Generalised Variational Inference can also be found in Knoblauch et al. (2019) where
they call it the rule of three. The different combinations are summarized in fig. 2.1. Even
if we are not doing standard Bayesian inference, we continue to call π a prior and qµi a
posterior distribution.

(`,Q, D) EWA Standard Bayes

Generalized VI Standard VI Bayes VI

D=KL
Q=P(Rd)

Q⊂P(Rd)

`(w)=− log pw(X)

Q⊂P(Rd)

D=KL `(w)=− log pw(X)

Figure 2.1: Summary of the different combinations of the rule of three (`,Q, D). Inspired
by Knoblauch et al. (2019).

As a last generalisation, instead of the expectation operator we consider any convex
operator Li that acts on the distribution µ and depends on the loss `i.

µi = argmin
µ∈M

{
i−1∑
j=1

Lj(µ) + λD(qµ, π)

}
. (2.8)

This will allow us to consider either Li(µ) = Ew∼qµ [`i(w)] or Li(µ) = `i
(
Ew∼qµ [w]

)
in Chapter 4. Keep in mind that at the end, we want to apply the tools of Online
Convex Optimisation to our problem, therefore, the sequence of losses (`i)i≥1 is replaced
by the sequence (Li)i≥1, and instead of predicting (wi)i≥1, we get (ρi)i≥1 and then predict
wi ∼ ρi. Comparatively, knowing ρi, we can assess the underlying uncertainty of the
process. The goal of the next section is to formally connect Generalized Variational
Inference to standard algorithms in Online Convex Optimisation. This connection leads
to a practical algorithm to solve eq. (2.8) and a regret bound.

2.2 GVI through the lenses of Online Convex Opti-

misation

We briefly review the Follow-The-Regularized-Leader (FTRL) algorithm in the Online
Convex Optimisation setting (OCO) and how it is linked to Online Mirror Descent (OMD)
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through linearisation following the monograph Shalev-Shwartz et al. (2012). For more
details about Mirror Descent in the batch setting we refer to the monographs Bubeck
(2015), Vishnoi (2020) and for FTRL and Online Mirror Descent in the OCO setting
we refer to the monographs Hazan (2019), Orabona (2019). Those tools are important
because Generalized Variational Inference can be casted as a special case of FTRL and
therefore inherits its theoretical analysis.

2.2.1 FTRL and GVI

We consider an arbitrary sequence of convex losses g1, g2 . . .; gi : V → R+ on an Euclidean
space V . It does not matter what is behind gi as long as it is convex. We can have gi = `i,
gi = Li as in GVI or it can be a meta loss as we will see in the next chapter. Given a
regulariser r : V → R+, the FTRL strategy solves for each i ≥ 1,

vi = arg min
v∈V

i−1∑
j=1

gi(v) + λr(v). (2.9)

Without the regularized term r, this strategy is called Follow-The-Leader. It is a natural
learning rule that predicts at any online round the parameter which has minimal loss on
all past rounds. However, this strategy can fail if the updates are too unstable (Example
2.2 Shalev-Shwartz et al. (2012)). Therefore, the regularization term is here to stabilize
the solution. To do so, r has to be strongly convex (definition A.1).

The similarity with eq. (2.8) is striking. GVI is a special case of FTRL where gi = Li
and r : µ → D(qµ, π). Therefore, a regret bound for FTRL is valid for GVI. The main
difficulty is to show under which conditions Li is convex and r is strongly convex. Chérief-
Abdellatif et al. (2019) shows that it holds for location-scale variational families and the
Kullback-Leibler divergence if the `i are convex (see also Domke (2019)). Regret bounds
for FTRL are well known but solving eq. (2.9) requires to solve an optimisation program
at each step and might be intractable in practice. In the next section, we show that
we can simplify the problem by linearising it. The resulting algorithm is equivalent to
an Online Mirror Descent. It leads to both a practical algorithm and a regret bound for
GVI.

2.2.2 Link to Online Mirror Descent through linearisation

If the gi are differentiable we have, for all (v, v′) ∈ V2,

gi(v) = gi(v
′) + 〈v − v′,∇v=v′gi(v)〉+ o (v − v′) . (2.10)
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Keeping only the linear part that depends on v, the suggested linearized update is3

vi = argmin
v∈V

{
i−1∑
j=1

〈
v,∇v=vjgj(v)

〉
+ λr(v)

}
. (2.11)

We refer to this update as Linear-FTRL. It is still a FTRL strategy but the convex losses
(gi)i≥1 are substituted with the linear losses ĝi(v) = 〈v,∇v=vigi(v)〉. In other words, each
gi is approximated by a linear loss that is its Taylor expansion of order 1 at the prediction
point vi. Since the gi’s are convex, for all i ≥ 1, and for all v ∈ V ,

gi(vi)− gi(v) ≤ 〈vi,∇v=vigi(v)〉 − 〈v,∇v=vigi(v)〉 = ĝi(vi)− ĝi(v).

Therefore, the regret produced by running Linear-FTRL on the sequence of losses (ĝi)i≥1

upper bounds the regret on the sequence (gi)i≥1. Let us note that if the gi are just convex
but not differentiable the argument still holds if we take subgradients (Definition A.2).

Another important point that motivates the use of Linear-FTRL is that it is equiva-
lent to Online Mirror Descent. Indeed, from the definition of the convex conjugate
(Definition A.3),

vi = argmin
v∈V

{
i−1∑
j=1

〈
v,∇v=vjgj(v)

〉
+ λr(v)

}

= argmax
v∈V

{〈
v,−1

λ

i−1∑
j=1

∇v=vjgj(v)

〉
− r(v)

}

= ∇r∗
(
−1

λ

i−1∑
j=1

∇v=vjgj(v)

)
.

(2.12)

In the last equality we used the fact that r is strongly convex (hence strictly convex) and
Proposition A.3. It can we re-written as follows, v1 = ∇r∗(0) and for i = 1, . . . ,

{
αi = ∇v=vigi(v)

vi+1 = ∇r∗
(
− 1
λ

∑i
j=1 αj

)
, (2.13)

or equivalently, α0 = 0, v1 = ∇r∗(0) and for i = 1, . . . ,

{
αi = αi−1 − 1

λ
∇v=vigi(v)

vi+1 = ∇r∗ (αi)
. (2.14)

It shows that Linear-FTRL is equivalent to Online Mirror Descent where the mirror map
that goes from the primal space to the dual space is ∇r. (vi)i≥1 is the primal sequence
and (αi)i≥1 is the dual sequence. We stress that there are other ways to introduce Online

3We still call the update vi so as not to make the notations more cumbersome but be aware that vi
in eq. (2.11) is not the same as in eq. (2.9).
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Mirror Descent, for example with Bregman divergences or Legendre functions. They lead
to slightly different versions. The version presented here is specifically called lazy Online
Mirror Descent

Strategy for GVI. Applying lazy OMD for GVI eq. (2.8) gives us a practical algorithm.
Once we know ∇r∗, at each online round, it only requires the computation of a gradient
(or a subgradient if the losses are not differentiable). The resulting strategy is given
in Algorithm 1. Let us emphasize that it does not solve eq. (2.8) directly but instead
it solves a linearized version of it that is equivalent to Online Mirror Descent. Regret
bound for Online Mirror Descent (i.e. Linear-FTRL) are well known and can be found
in Shalev-Shwartz et al. (2012). In Chérief-Abdellatif et al. (2019) they were the first to
apply the regret bounds from Online Mirror Descent to Variational Inference by treating
it as an Online Convex Optimisation problem. More recently, Alquier (2020) generalised
this analysis to Generalized Variational Inference as stated in the following theorem.

Theorem 2.1 (adaptation of Theorem 4.2 Alquier (2020)). Let ‖ · ‖ be a norm on Rd. If
each Li is convex and L-Lipschitz with respect to ‖ · ‖, if ψ : µ 7→ D (qµ‖π) is α-strongly
convex with respect to ‖·‖ (it implies that ψ∗ is differentiable), then:

n∑
i=1

Li(µi) ≤ inf
µ∈M

{
n∑
i=1

Li(µ) +
nL2

λα
+ λD (qµ, π)

}
, (2.15)

where (µi)
n
i=1 is the output of Algorithm 1. If Li(µ) = Ew∼qµ [`i(w)] and `i is convex for

all i ≥ 1, the cumulative regret has the following upper bound when ŵi = Ew∼qµi [w] is the
posterior mean,

n∑
i=1

`i (ŵi) ≤ inf
µ∈M

{
n∑
i=1

Ew∼qµ [`i(w)] +
nL2

λα
+ λD(qµ, π)

}
. (2.16)

Algorithm 1: Lazy OMD (a.k.a Linear-FTRL) for Generalized Variational Inference

Init: ψ : µ 7→ D (qµ‖π), µ1 = ∇ψ∗(0);
Loop for i← 1, . . . , n do

Receive Li, suffer Li(µi)

αi ∈ ∂Li(µi)

µi+1 = ∇ψ∗
(
− 1
λ

∑i
j=1 αj

)
Return: (µi)

n+1
i=1

Conclusion of the chapter. We have introduced Generalized Variational Inference
for the within-tasks and how it can be solved with a particular Online Mirror Descent
scheme. In the convex setting, Online Mirror Descent has a known regret bound. In
the next chapter, we will see how Online Mirror Descent can be adapted to run a meta
algorithm. To achieve this goal, we will present a different view of Online Mirror Descent
based on the Fenchel-Rockafellar duality.
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Chapter 3

Primal-Dual Online Learning and
application to the Meta task

In the online Meta Learning framework introduced in Chapter 1, the role of the meta
algorithm is to select a within-task algorithm for each new task. Our choice for the
within-task algorithms is the Generalized Variational Inference family introduced in the
last chapter. For a GVI strategy, once the variational family and the divergence are fixed
the remaining degree of freedom is the choice of the prior. Therefore, we suggest a meta
algorithm that will select a prior for each task. It is natural to incorporate information
from one task to the other through a prior. For the Bayesian community, a prior is a
representation of the information we have on a specific task before seeing the data. With
Meta Learning, we have multiple datasets, and once a new dataset arrives we should
incorporate all the information we have from the previous datasets into the prior that
serves to treat the new task.

In the first section, we formalise the idea of learning a prior with a meta algorithm. In
the second section, we present a Primal-Dual view of Online Learning that unifies many
algorithms such as FTRL and OMD, it serves as a building block to get our meta strategy.
Finally, in the last section, we give the general meta algorithm and its regret bound.

3.1 Meta Variational Inference

To derive a meta algorithm we start with a parametric family of priors {πθ, θ ∈ Θ}. Our
strategy is to apply a second online algorithm at the meta level to sequentially learn θ.
To achieve this goal, we define a sequence of meta losses (Lt : Θ→ R+)t≥1. We introduce
again the double index {t, i} where t refers to the task t and i the datapoint inside that
task1. Our meta objective is the following,

Lt(θ) = min
µ∈M

1

n

n∑
i=1

Lt,i(µ) + λD(qµ, πθ), θ ∈ Θ. (3.1)

1For simplicity we have assumed that each task contains the same number of points n.
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Lt(θ) is the best regularized variational regret loss we could get after solving the problem
in hindsight with prior πθ. It measures how good is πθ for task t. The use of the ”min”
operator will be properly justified in the next section. The meta loss is inspired by the
meta learning ”bias” framework suggested in Denevi et al. (2019b), that is in turn inspired
by previous work on Multi-Task Learning. Our objective is to apply an online algorithm
(specifically another Online Mirror Descent) to adapt θ to the sequence of losses (Lt)t≥1.

In the remainder we will answer the following question: when is it possible to run Online
Mirror Descent on (Lt)t≥1? There are two difficulties, preserving the convexity of Lt and
building subgradients.

(a) The theoretical guarantees for Online Mirror Descent lie on convexity. While not
obvious to get for Lt, a sufficient condition is that the divergence in jointly convex
in (µ, θ).

(b) To run Online Mirror Descent we need a first-order oracle i.e. we need a procedure
that given any point θ ∈ Θ and step t ≥ 1 outputs a subgradient of Lt at θ. We
do not have access to a zeroth order oracle since the within-task algorithm might
not achieve the min. However, following the analysis done in Denevi et al. (2019b),
we show that it is possible to build approximate subgradients using the ”dual”
outputs of the within-task algorithm. The approximation is known in closed form
and incorporated into the meta regret bound. The strategy exploits a different
analysis of Online Mirror Descent than the one presented in the last section. It is
based on the Fenchel-Rockafellar duality and is presented in the next section.

Let us stress that eq. (3.1) does not defined a variational program, there is no expectation.
We do not learn a ”meta distribution” but instead directly treat the parameters of the
prior as meta parameters we want to learn.

3.2 Primal-Dual Online Learning: unified view of

OMD and FTRL

In this section, we take a step back from the Meta Learning problem and present an
analysis of Online Convex Optimisation through the prism of duality: Primal-Dual On-
line Learning. Due to Shalev-Shwartz and Singer (2007c), Shalev-Shwartz and Kakade
(2009), Shalev-Shwartz and Singer (2007b), Shalev-Shwartz and Singer (2007a), it has
been adapted by Denevi et al. (2019b) to suggest a frequentist meta learning strategy.
Our contribution is to show that it can also be adapted for Generalized Variational Infer-
ence. In comparison to the linearization approach of the last chapter, the advantages of
the Primal-Dual approach are the following,

(a) it relates multiple algorithms such as Follow-The-Regularized-Leader and Online
Mirror Descent through the notion of aggressiveness under a single algorithm with
known regret bound. While not essential for our framework as we will still use Online
Mirror Descent at the end, it leaves the door open for more aggressive optimisation
schemes in between FTRL and OMD.
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(b) it allows the use of approximate subgradients instead of subgradients. This is im-
portant as we do not have access to exact subgradients for the meta losses. Let us
note that it should be easy to add this feature to the linearized approach too.

(c) it provides dual gap bounds from which regret bounds like Theorem 2.1 are a conse-
quence. The dual gap bound is the key element for the construction of approximate
subgradients of the meta losses and is the main reason why we cannot only rely on
the approach of the last chapter.

Since the analysis is not specific to Variational Inference we introduce an arbitrary OCO
problem, using the similar notations as eq. (2.9): g1, . . . , gM is a sequence of losses indexed
by m and defined over an Euclidean space V , cm is the regularisation strength at step m
and r is a regularizer. For all m ≥ 1,

Pm+1 = inf
v∈V

P̂m+1(v) P̂m+1(v) =
m∑
j=1

gj (v) + cmr(v). (3.2)

The associated Follow-The-Regularized-Leader update is vm+1 = arg minv∈V P̂m+1(v).
The corresponding Fenchel dual to eq. (3.2) is,

Dm+1 = inf
α∈Vm

D̂m+1(α) D̂m+1(α) =
m∑
j=1

g∗j (αj) + cmr
∗

(
− 1

cm

m∑
j=1

αj

)
. (3.3)

We call the two program the instantaneous Primal-Dual pair at step m. Weak duality
always holds: Pm+Dm ≥ 0 for all m ≥ 1. For more details about Fenchel duality, we refer
the reader to Peypouquet (2015). We make the following standard assumptions where
‖ · ‖ is a norm on V ,

Assumption 1: cm > 0, r is a s-strongly convex (s > 0), proper and closed function on
V w.r.t. ‖ · ‖ such that infv∈V r(v) = 0.

Assumption 2: for m ∈ {1, . . . ,M}, gm is a closed, convex and real-valued function on
V .

Theorem 3.1 characterises strong duality for the instantaneous Primal-Dual pair.

Theorem 3.1 (Denevi et al. (2019b) Prop. 32 and Lemma 34). Under Assumptions 1
and 2, both the primal and the dual admit a solution and strong duality holds, for all
m ≥ 1: Pm + Dm = 0. We denote by v̂m ∈ V the primal variable solution of Pm and by
α̂m ∈ Vm−1 the dual variable solution of Dm. Strong duality implies that

Pm =
m−1∑
j=1

gj(v̂m) + cmr(v̂m) =
m−1∑
j=1

g∗j (α̂m,j) + cmr
∗

(
− 1

cm

m−1∑
j=1

α̂m,j

)
= Dm. (3.4)
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v̂m and α̂m are related through the following optimality conditions,

v̂m = ∇r∗
(
− 1

cm

m−1∑
j=1

α̂m,j

)
α̂m ∈ ∂ (Gm−1)(Am−1(v̂m)) , (3.5)

where,

Gm−1(α) =
m−1∑
j=1

gj (αj) , ∀α ∈ Vm−1 and Am−1(v) = (v, . . . , v) ∈ Vm−1 ∀v ∈ V

.

Proof. (eq. (3.2) - eq. (3.3)) is an example of Fenchel-Rockafellar primal-dual problem. A
classical result (Theorem 3.51 in Peypouquet (2015)) states that if the primal admits a
minimiser v̂m and there exists v ∈ dom(r) such that the gm’s are continuous at v, then the
dual admits a minimiser α̂m, strong duality holds and the minimisers are related through
the conditions:

v̂m∈ ∂r∗
(
− 1

cm

m−1∑
j=1

αm,j

)
α̂m ∈ ∂ (Gm−1)(Am−1(v̂m)) . (3.6)

Since strong convexity of r (Assumption 1) implies strict convexity of r which implies that
r∗ is differentiable (by proposition A.3) we get eq. (3.5) by replacing the subdifferential
in the left term.

Let us prove that the hypothesis for the theorem on Fenchel-Rockafellar duality hold.
Strong convexity of r (Assumption 1) and convexity of gm (Assumption 2) ensure that
the primal objective is strongly convex thus coercive and strictly convex therefore it admits
a unique solution. Any convex function is continuous on the interior of its domain, but
the gm’s are real-valued on V which implies dom(gm) = V , therefore they are continuous
on the entire space V , which concludes the proof.

Before the introduction of the general class of Primal-Dual Online algorithms, we recall
the definition of approximate subgradients.

Definition 3.1 (ε−subdifferential, ε > 0). Let f be a convex function on V,

∂εf(v) = {α ∈ V : f (v′) ≥ f(v) + 〈α, v′ − v〉−ε, for any v′ ∈ Domf} .

If u ∈ ∂εf(v), u is called an ε−subgradient of f at v. From the definition we get that v
is an ε−minimiser of f if and only if 0 ∈ ∂εf(v). If ε = 0 we retrieve standard subgradients
(Definition A.2).

We are now ready to introduce the general algorithm. As it might be too expensive to
find v̂m or equivalently α̂m at each step m — i.e. to apply Follow-The-Regularized-Leader

22 Chapter 3. Primal-Dual Online Learning and application to the Meta task



3.2. Primal-Dual Online Learning: unified view of OMD and FTRL Master’s Thesis

— we would like to take less aggressive updates. We consider any strategy that outputs
a sequence of dual variables α1, α2, . . . (αm ∈ Vm−1) that satisfies the following property,

εm ≥ 0, α′m ∈ ∂εmgm (vm)

D̂m+1 (αm+1) ≤ D̂m+1(αm,1, . . . , αm,m−1︸ ︷︷ ︸
=αm

, α′m) = D̂m+1(αm, α
′
m), (3.7)

where vm is related to αm with the same optimality condition as in Theorem 3.1,

vm = ∇r∗
(
− 1

cm

m−1∑
j=1

αm,j

)
. (3.8)

We call the set of strategies that satisfy this rule the Primal-Dual Online family. The
aggressiveness of a sequence of dual updates α1, α2, . . . is measured by how large is the
inequality in eq. (3.7) at each step. If εm = 0, we see that Online Mirror Descent is
the least aggressive strategy as it saturates the inequality at each step. Indeed, Online
Mirror Descent greedily update only the last coordinate of αm with the update rule
αm+1 = (αm, α

′
m), α′m ∈ ∂gm (vm), therefore,

D̂m+1 (αm+1) =D̂m+1(αm, α
′
m). (3.9)

On the other hand of the aggressiveness spectrum, Follow-The-Regularized-Leader up-
dates all the dual coordinates and maximise the size of the inequality. Indeed, for FTRL,
we take αm+1 ∈ ∂(Gm)(Am(vm+1)) where vm+1 = arg minv∈V P̂m+1(v), therefore, by The-

orem 3.1, αm+1 = arg minα∈Vm D̂m+1(α), hence, for α′m ∈ ∂gm (vm),

Dm+1(αm, α
′
m)− D̂m+1 (αm+1) = max

α∈Vm
Dm+1(αm, α

′
m)− D̂m+1(α). (3.10)

A plethora of intermediate strategies are worth considering, for example, doing a hard
optimisation of only the last coordinate or a group of the last coordinates. When εm > 0,
we take into account algorithms with imperfect access to subgradients, the errors will
accumulate in the dual bound. The general algorithm for this family is given in Algorithm
2 and the associated dual gap bounds are given in Theorem 3.2.

Theorem 3.2 (Dual Bounds, Thm. 1 Denevi et al. (2019b)). Let (vm)Mm=1 be the primal

iterates outputted by Algorithm 2 and let ∆Dual = D̂M+1 (αM+1) − DM+1 be the corre-
sponding (non-negative) dual optimality gap at the last dual iterate of the algorithm. If
Assumptions 1 and 2 are satisfied,

1. if, for any m ∈ {1, . . . ,M}, cm+1 ≥ cm, then

∆Dual ≤ −
M∑
m=1

gm (vm) + PM+1 +
1

2s

M∑
m=1

1

cm
‖α′m‖

2
∗ +

M∑
m=1

εm.
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2. if , for any m ∈ {1, . . . ,M}, cm =
∑m

j=1 λj for some λj > 0, then,

∆Dual ≤ −
M∑
m=1

{gm (vm) + λmr (vm)}+ PM+1 +
1

2s

M∑
m=1

1

cm
‖α′m‖

2
∗ +

M∑
m=1

εm,

where for all m ≥ 1, α′m ∈ ∂gm (vm) and ‖.‖∗ is the dual norm of ‖.‖.

Algorithm 2: General Primal-Dual algorithm

Init: v0 = ∇r∗(0);
Loop for m← 1, . . . ,M do

Receive gm, cm, εm

suffer gm(vm),

take any update αm+1 satisfying eq. (3.7)

vm+1 = ∇r∗
(
− 1
cm

∑m
j=1 αm+1,j

)
Return: (αm)M+1

m=2 , (vm)M+1
m=1

Remark. The dual gap bounds are valid for any algorithm that satisfies eq. (3.7) from
the least aggressive (OMD) to the most aggressive (FTRL). However, keep in mind that
OMD is simple to run as we only need access to subgradients while more aggressive
schemes necessitate more involved optimisation steps. If we assume more structure on
the underlying problem and that a more aggressive algorithm than OMD is computable
it might be more effective in practice.

3.3 Meta strategy from Primal-Dual Online Learning

In this section we show how we can apply Theorem 3.2 to the within-task problem as well
as the meta layer and present the meta regret bound.

3.3.1 Within-task algorithm

We recall the definition of the meta objective,

Lt(θ) = min
µ∈M

1

n

n∑
i=1

Lt,i(µ) + λD(qµ, πθ), θ ∈ Θ. (3.11)

It motivates the use of a within-task online algorithm that mimics this batch objective.
We apply a Primal-Dual Online learning strategy on the following Primal-Dual pair where
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the primal is the non-normalized within-task problem associated with eq. (3.11). We fix
θ ∈ Θ and t ≥ 1. We introduce the notation ψθ : µ 7→ D(qµ, πθ), for all i ≥ 1,2

P θ
t,i+1 := inf

µ∈M
P̂t,i+1(µ, θ) P̂t,i+1(µ, θ) :=

i∑
j=1

Lt,j(µ) + nλψθ(µ)

Dθ
t,i+1 := inf

α∈Mi
D̂t,i+1(α, θ) D̂t,i+1(α, θ) :=

i∑
j=1

L∗t,j (αj) + nλψ∗θ

(
− 1

nλ

i∑
j=1

αj

)
.

(3.12)

The strategy we choose is Online Mirror Descent but it is also possible to use a more
aggressive strategy as mentioned in the last section. For all i ≥ 2, we take µt,i ∈ M,
α′t,i ∈Mi−1 where we greedily update only the last coordinate of α′t,i with the update rule
α′t,i = (α′t,i−1, αt,i−1), αt,i−1 ∈ ∂Lt,i−1(µt,i−1) and relates µt,i to αt,i through the optimality

condition µt,i = ∇ψ∗
(
− 1
nλ

∑i−1
j=1 α

′
t,i,j

)
= ∇ψ∗

(
− 1
nλ

∑i−1
j=1 αt,j

)
. The algorithm is given

in Algorithm 3. By identification to (eq. (3.2) - eq. (3.3)) with i← m, n←M , nλ← cm,
M ← V , ψθ ← r, Lt,j ← gj and εj = 0 (no approximation we have access to the
subgradients of Lt,i), we apply the second point in Theorem 3.2 and get the following
dual bound.

Proposition 3.1 (Inner regularized duality gap bound). Let θ ∈ Θ be fixed, (µt,i)
n
i=1

are the primal iterates and α′t,n+1 = (αt,i)
n
i=1 is the last dual iterate returned by Algo-

rithm 3 with meta parameter θ on dataset Zt, for all i ≥ 1, αt,i ∈ ∂Lt,i(µt,i). ∆Dual =

D̂t,n+1

(
α′t,n+1, θ

)
−Dθ

t,n+1 is the corresponding (non-negative) dual optimality gap at the
last dual iterate. If Lt,i satisfies Assumption 2 and ψθ Assumption 1 with respect to a
norm ‖.‖θ and strongly convex parameter sθ, then,

∆Dual ≤ −
n∑
i=1

{Lt,i(µt,i) + λψθ(µt,i)}+ nLt(θ) +
1

2sθλ

n∑
i=1

1

i
‖αt,i‖2

θ,∗ := εθ. (3.13)

Remark 1. The strongly convex parameter for ψθ can depends on θ and similarly
Assumptions 1 and 2 are with respect to a norm that can depends on θ. That is why we
use the notations sθ and ‖.‖θ.

Remark 2. Assumption 1 for ψθ and Assumption 2 for Lt,i are not trivial. For example,
when ψθ is the Kullback-Leibler divergence it is known that it is jointly convex with respect
to the distributions but it might not stay convex with respect to the parameters of those
distributions (e.g with respect to the mean and the variance of two Gaussian distributions).
For Assumption 2, when Lt,i(µ) = Ew∼qµ [`t,i(w)], if the underlying losses `t,i are convex
and {qµ, µ ∈ M ⊆ Rp} is a location-scale family (e.g. Gaussian, Student, Laplace etc),
it can be shown that Lt,i is convex. Those assertions will be discussed and proved in
Chapter 4.

2notice that since Lt is a regularized empirical error, in comparison to Chapter 2, the regularization
strength is nλ instead of λ, it leads to slightly different bounds.
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From the bound, we see that the last dual iterate (αt,i)
n
i=1 is an εθ−minimiser of the dual

problem D̂t,n+1 where εθ is the right hand side in eq. (3.13). In the next section, we show
that this fact can be used to build approximate subgradients for the meta objective.

3.3.2 Meta subgradient

For any meta parameter θ ∈ Θ and task t, Proposition 3.2 connects the dual gap in
eq. (3.13) to the construction of an approximate subgradient ∇′θ ∈ ∂εθ/nLt(θ).

Proposition 3.2 (ε-subgradient for Lt - Prop 3 Denevi et al. (2019b)). Let ᾱθ :=
(αt,i)

n
i=1 ∈ M

n be the dual output of Algorithm 3 with meta parameter θ on dataset

Zt. Let ∇θ ∈ ∂
{
−D̂t,n+1 (ᾱθ, ·)

}
(θ), where

D̂t,n+1(α, θ) =
n∑
i=1

L∗t,i (αi) + λnψ∗θ

(
− 1

λn

n∑
i=1

αi

)
α ∈Mn,

is the dual of the non-normalized inner problem associated to task t. Under the same
assumptions that in Proposition 3.1, ∇′θ := ∇θ/n ∈ ∂εθ/nLt(θ), where εθ is defined in
Proposition 3.1.

Proof. Assumptions 1 and 2 ensure that we can apply Theorem 3.1 to the inner algorithm.
By strong duality, since D̂t,n+1 is the dual problem associated to the non-normalized
within-task problem, for all θ′ ∈ Θ, it holds that

nLt(θ′) = − min
α∈Mn

D̂t,n+1(α, θ′),

i.e.

Lt(θ′) = max
α∈Mn

D̃t,n+1(α, θ′) D̃t,n+1(α, θ′) := − 1

n
D̂t,n+1(α, θ′).

From Proposition 3.1 we know that ᾱθ is an εθ minimiser of D̂t,n+1(., θ), therefore it is an
εθ/n maximiser of D̃t,n+1(., θ) . For any θ′ ∈ Θ, we have,

Lt (θ′) = max
α∈Mn

D̃t,n+1 (α, θ′)

≥ D̃t,n+1 (ᾱθ, θ
′)

≥ D̃t,n+1 (ᾱθ, θ) +

〈
∇θ

n
, θ′ − θ

〉
≥ max

α∈Mn
D̃t,n+1 (α, θ)− εθ

n
+

〈
∇θ

n
, θ′ − θ

〉
= Lt(θ) +

〈
∇θ

n
, θ′ − θ

〉
− εθ
n
.

(3.14)

In the second inequality we use that by definition ∇θ/n ∈ ∂
{
D̃t,n+1 (ᾱθ, ·)

}
(θ), and in

the third inequality we use that ᾱθ is an εθ/n maximiser of D̃t,n+1(., θ). It shows that
∇θ/n ∈ ∂εθ/nLt(θ).
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It gives a simple rule to build approximate subgradients. The only requirement is to know
the gradient with respect to the meta parameter of the conjugate function ψ∗θ and to plug
the output of the inner algorithm.

3.3.3 Meta Algorithm and dual gap bound

It the last sections, we proved a dual bound for the inner algorithm and a way to build
approximate subgradients of the meta loss using only Assumptions 1 and 2 on the inner
losses. Introducing a meta regularization function φ : Θ→ R+ and regularization strength
η we are thus able to run approximate Online Mirror Descent on the meta losses. Notations
for the within-task OMD and meta OMD are summarized in Table 3.1. To build a dual
gap bound we need Assumption 1 to hold for φ with respect to a norm |||.||| and strongly
convex parameter s̃, and Assumption 2 for (Lt)t≥1. As it is not obvious that Lt is convex,
we introduce a sufficient condition.

Assumption 3 ψθ(µ) is jointly convex in (µ, θ) on M×Θ.

Assumption 3 implies that Lt is convex on Θ by Proposition A.2. By identification to
(eq. (3.2) - eq. (3.3)) with t ← m, T ← M , η ← cm, Θ ← V , φ ← r, Lt ← gj running
Online Mirror Descent gives Algorithm 4. As the reader might feel overwhelmed by
the heavy notations used up to this place we provide a summary of the notations and
assumptions in Table 3.1 and Table 3.2. We apply Theorem 3.2 point 1 to get the following
duality gap bound.

Proposition 3.3 (Meta regularized duality gap bound). Run Algorithm 4 (which itself
runs Algorithm 3 on each task) that outputs (µt,i)

n
i=1 for all t ≥ 1 and (θt)

T
t=1. If the Lt,i

satisfy Assumption 2, ψθ Assumption 1 with strongly convex coefficient sθ and norm ||.||θ
and Assumption 3 (it ensures that Lt satisfies Assumption 2), and φ satisfies Assumption
2 with strongly coefficient s̃ and norm |||.|||, then, using the fact that the dual gap is always
positive we get,

0 ≤ −
T∑
t=1

Lt(θt) + min
θ∈Θ

T∑
t=1

{Lt(θ) + ηφ(θ)}+
1

2ηs̃

T∑
t=1

|||∇θt|||2∗ +
T∑
t=1

εθt . (3.15)

Plugging the value of εθt and rearranging the term, we get,

T∑
t=1

n∑
i=1

Lt,i(µt,i) + λψθt(µt,i) ≤ inf
θ∈Θ

(µ̄t)Tt=1∈MT

nT

{
η

T
φ(θ) +

λ

T

T∑
t=1

ψθ(µ̄t)+

1

nT

T∑
t=1

n∑
i=1

Lt,i(µ̄t) +
1

2λnT

T∑
t=1

1

sθt

n∑
i=1

||αt,i||2θt,∗
i

+
1

2s̃ηT

T∑
t=1

|||∇θt |||2∗
}
.

(3.16)

Remark. To get a more explicit bound with noticeable convergence rates, we need:

(i) the exact form of φ and ψθ
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(ii) to precise the variational family and the prior family

(iii) a control over the norm of the inner subgradients and the meta subgradients. The
inner subgradients can usually be bounded by a constant under a Lipschitz hy-
pothesis. The bound on |||∇θt |||2∗ on the other hand might hide a dependency with
respect to λ and n which is non-trivial to analyse. In the next chapter, we give
an example in the Gaussian Mean Field setting and derive the corresponding meta
regret bound.

Table 3.1: Summary of the notations for the within-task and meta OMD
Within-Task Algorithm Meta Algorithm

Algorithm GVI-OMD Approximate-OMD
Parameter µ ∈M θ ∈ Θ
Regularizer ψθ φ
Learning rate iλ η
Underlying family qµ πθ
of distributions

Table 3.2: Summary of the assumptions for the within-task and meta OMD
Assumptions

ψθ sθ-strongly convex, proper and closed on M w.r.t. ‖ · ‖θ, infµ∈M ψθ(µ) = 0
jointly convex as a function of (µ, θ) on M×Θ

Lt,i closed, convex and real-valued on M
φ s̃-strongly convex, proper and closed on Θ w.r.t. ||| · |||, infθ∈Θ φ(θ) = 0

Algorithm 3: Within-task (GVI)

Input: θ ∈ Θ, λ > 0, task Zt
Init: µt,1 = ∇ψ∗θ(0);
Loop for i← 1, . . . , n do

Receive `t,i, ŵt,i = Ew∼qµt,i [`t,i(w)]

suffer `t,i(ŵt,i),

αt,i ∈ ∂Lt,i(µt,i)

µt,i+1 = ∇ψ∗θ
(
− 1
iλ

∑i
j=1 αt,j

)
Return: (αi)

n+1
i=2 , (µi)

n+1
i=1

Algorithm 4: Meta algorithm

Input: η > 0
Init: θ1 = ∇φ∗(0) ;
Loop for t← 1, . . . , T do

Receive incrementally the dataset Zt

run Algorithm 3 with θt over Zt

Compute ∇t
∗ as in Proposition 3.2

θt+1 = ∇φ∗
(
− 1
η

∑i
j=1∇j

∗

)
Return: (θt)

T+1
t=1

Conclusion of the chapter. We have introduced the sequence of meta losses and the
Primal-Dual Online Learning framework that allows to theoretically analyse a meta Online
Mirror Descent on the meta losses. We provided the within-task and meta abstract Online
Mirror Descent derived from this framework. The within-task OMD is standard and the
subgradients for the meta OMD are approximated with the dual outputs of the within-
task OMD. Despite this approximation, a meta regret bound for the entire procedure is
given in Proposition 3.3. In the next chapter, we specialise those results in a practical
setting with a Gaussian Mean Field variational family.
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Chapter 4

A Practical Algorithm in the
Gaussian Mean Field setting

In this chapter, we derive a practical algorithm and its regret bound to solve the online
Meta Learning problem. We use a Gaussian Mean Field family for both the variational
family and the prior family. We only learn the mean at the inner level, we refer to this
algorithm as 2OGD for ”Double Online Gradient Descent”. 2OGD can be seen as an
extension of the strategy presented in Denevi et al. (2019b) where, by learning the meta
variance, we adaptively learn the gradient step size coordinate by coordinate for the inner
OGD.

4.1 Setting

As in the preceding chapters we iteratively receive a sequence of sequence of losses indexed
by {t, i}: `t,i, that we assume convex for all t ∈ [T ] and i ∈ [n]. We specify an inner
and a meta Online Mirror Descent that satisfies the hypothesis summed up in Table 3.1
and Table 3.2 in the Gaussian Mean field setting. Let σ2 ∈ Rd

++ be a fixed variance
parameter. The Gaussian Mean Field variational family is the most common for large
scale applications of Variational Inference such as deep neural networks Graves (2011),
Blundell et al. (2015). The Gaussian family usually leads to simple updates and by
learning only a diagonal variance-covariance matrix, it stays memory efficient. The choice
of variational family is

{qm,m ∈ Rd} = {N (m,Diag(σ2)),m ∈ Rd}.

In this setting, the operator we take for the loss is Lt,i(m) = `t,i(Ew∼qm [w]) = `t,i(m).
Lt,i does not depend on σ2, therefore we can just ignore this parameter and set it to 1d.
A more involved algorithm can use Lt,i(m,σ

2) = Ew∼N (m,Diag(σ2)) [`t,i(w)] to learn both m
and σ2. We start with the simple case where we only learn m. For the prior family we
take a Gaussian family parametrised with a diagonal variance-covariance matrix,

{πµ,v, (µ, v) ∈ Rd × Rd
++} = {N (µ,Diag(v)), (µ, v) ∈ Rd × Rd

++}.
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For the inner and meta regularisation functions we take two ”Euclidean-like” functions,

• ψµ,v(m) =
∑d

i=1

{
(mi−µi)2

2vi
+ vi

}
• φ(µ, v) = 1

2s2
||µ||22 + 1

2s2
||v − s21d||22

s2 can be seen as the variance of a meta prior N (0, s2Id). In comparison to Table 3.1, the
choices are summarized in Table 4.1,

Table 4.1: Summary of the choices for the Gaussian Mean Field 2OGD
Within-Task Algorithm Meta Algorithm

Algorithm GVI-OMD Approximate-OMD
Parameter m ∈ Rd (µ, v) ∈ Rd × Rd

++

Regularizer ψµ,v(m) =
∑d

i=1
(mi−µi)2

2vi
+ vi φ(µ, v) = 1

2s2
||µ||22 + 1

2s2
||v − s21d||22

Learning rate iλ η
Underlying qm  Nd(m, Id) πµ,v  N (µ,Diag(v))
distributions

We need to check that this set up satisfies the functional specifications given in Table 3.2.
The convexity of the Lt,i follows from the convexity of the `t,i since Lt,i(m) = `t,i(m), the
rest is specified in Proposition 4.1.

Proposition 4.1. ψµ,v is ‖v‖−1
∞ −strongly convex in m on Rd with respect to the Euclidean

norm and φ is s−2−strongly convex in (µ, v) on Rd × Rd
++ with respect to the Euclidean

norm. Furthermore, ψµ,v(m) is jointly convex in (m,µ, v) and inf(µ,v)∈Rd×Rd++
φ(µ, v) = 0,

infm∈Rd ψµ,v(m) = 0.

Proof. ∇2
mψµ,v(m) = Diag(v−1) and ∇2

µ,vφ(µ, v) = s−2I2d. Their smallest eigenvalues are
respectively (maxi vi)

−1 > 0 and s−2 > 0 and give the coefficients of strong convexity
by Proposition A.1. For the joint convexity of ψµ,v(m) in (m,µ, v), notice that (x, t) ∈
R× R++ 7→ x2

t
is convex in (x, t) as it is the perspective function of the convex function

x 7→ x2 (see section 3.2.6 in Boyd et al. (2004)). Therefore ψµ,v(m) is convex in (m,µ, v)
as a sum of jointly convex functions and a composition with a linear transformation.

Comments on the regularisation functions. The choices for the regularisation
functions may seem odd. Indeed if we use only Gaussian distributions, why not us-
ing two Kullback-Leibler divergences ? The reason is that it does not satisfy the re-
quirements given by Table 3.2. For the inner regularisation, the choice ψµ,v(m) =
KL(N (m, Id),N (µ,Diag(v))) is not jointly convex in (m,µ, v) (Proposition A.6 and
Proposition A.7). With our choice we cut off the part of the KL divergence that is
not convex in v. Let us notice that we parametrise the prior family with the variance
v and not with a standard deviation v̂ =

√
v because otherwise we would have used

1
2

∑d
i=1

(mi−µi)2
v̂2

which is not jointly convex either (the function (x, t) ∈ R × R++ 7→ x2

t2

is not jointly convex). For this reason, we also did not choose a Kullback Leibler di-
vergence at the meta level, φ(µ, v) = KL(N (µ,Diag(v)),N (0, s2Id)), because it is not
strongly convex when we parametrise with the variance (it is only strictly convex see
Proposition A.7). To overcome this, we can still use a KL penalisation if we restrict
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the set of v to a compact K ⊂ Rd
++ or if we add a strongly convex term, for example,

φ(µ, v) = KL(N (µ,Diag(v)),N (0, s2Id)) + ||v||22. For simplicity, we stick to φ as defined
in Table 4.1.

4.2 Within-task Algorithm

In this part, we derive the within-task algorithm by applying the generic Algorithm 3
to the Gaussian Mean Field setting. The algorithm we obtain is reported in Algorithm
5. We fix the meta variable (µ, v) ∈ Rd × Rd

++ and dataset Zt but omit the index t for
readability. To derive Algorithm 5 from Algorithm 3, we need to compute ∇ψ∗µ,v as the
update is given by,

m1 = ∇ψ∗µ,v (0)

∀i ≥ 2 mi+1 = ∇ψ∗µ,v

(
− 1

iλ

i∑
j=1

αj

)
, ∀j αj ∈ ∇`j(mj).

(4.1)

Proposition 4.2. ψµ,v(m) = 1
2

∑d
i=1

(mi−µi)2
vi

+
∑d

i=1 vi. For all α ∈ Rd,

ψ∗µ,v(α) = 〈α, µ〉+
1

2
〈α2, v〉 −

d∑
i=1

vi

∇ψ∗µ,v(α) = (µ1 + v1α1, . . . , µd + vdαd),

(4.2)

where α2 is the vector α with each coordinate raised to the power 2.

Proof. Let us study the conjugate function of gy,z(x) = (x−y)2

2z
, where x, y, z ∈ R×R×R++.

gy,z is strictly convex in x, therefore, by Proposition A.3, g∗y,z is differentiable and for all
α ∈ R,

∇g∗y,z(α) = arg max
x∈R

αx− gy,z(x)

= arg max
x∈R

zαx− x2

2
+ xy

= arg max
x∈R

−1

2
(y + zα− x)2

= y + zα.

By plugging back this solution in the definition of g∗y,z, we get,

g∗y,z(α) = sup
x∈R

αx− gy,z(x)

= α(y + zα)− gy,z(y + zα)

= α(y + zα)− zα2

2

= αy +
zα2

2
.
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For any function g on Rd that admits the decomposition g(x) =
∑d

i=1 gi(xi) its Fenchel

transform admits the decomposition g∗(α) =
∑d

i=1 g
∗
i (αi). Thus, if the g∗i are differentiable

∇g∗(α) = (∇g∗1(α1), . . . ,∇g∗d(αd)). Furthermore, if h(x) = f(x) + C for all x ∈ Rd where
C does not depend on x, then h∗(α) = f ∗(α) − C for all α ∈ Rd. Here, ψµ,v(m) =∑d

i=1 gµi,vi(mi) + C (C :=
∑d

i=1 vi), therefore,

ψ∗µ,v(α) =
d∑
i=1

g∗µi,vi(αi)−
d∑
i=1

vi =
d∑
i=1

αiµi +
vi
2
α2
i −

d∑
i=1

vi

∇ψ∗µ,v(α) = (g∗µ1,v1(m1), . . . ,∇g∗µd,vd(md)) = (µ1 + v1α1, . . . , µd + vdαd).

(4.3)

The update for mi is obtained by plugging the expression of ∇ψ∗µ,v(α) in eq. (4.1). Propo-
sition 4.3 shows that it boils down to a simple online gradient descent on the regularized
loss functions. The resulting within-task algorithm is given in Algorithm 5.

Proposition 4.3 (Recursive update). eq. (4.1) can be written recursively as,

mi+1 = mi −
v

λi︸︷︷︸
:=ηi

(
αi +

λ

v
(mi −m1)

)
︸ ︷︷ ︸

:=gi

= mi − ηigi. (4.4)

Additions, multiplications and divisions between vectors are to be understood component-
wise.

Proof. From eq. (4.1) and Proposition 4.2, m1 = ∇ψ∗µ,v (0) = µ, and for all i ≥ 2,

mi+1 = µ︸︷︷︸
=m1

− v

λi

i∑
j=1

αj = m1 −
v

λi

(
i−1∑
j=1

αj + αi

)

= m1 −
v

λi

(
λ(i− 1)

v
(m1 −mi) + αi

)
by def of mi

= m1 −
v

λi

((
λi− λ
v

)
(m1 −mi) + αi

)
= mi −

v

λi

(
αi +

λ

v
(mi − µ)

)
.

Comments on Algorithm 5. Since gi ∈ ∂ (`i(mi) + λψµ,v(mi)), the update can be
seen as an Online Gradient Descent on the regularized losses : `i(.) + λψµ,v(.), therefore
we call it Regularized-OGD. The starting point of the descent is the meta parameter µ
and the step-size ηi depends on the meta parameter v. Therefore, by learning (µ, v) at the
meta level, we learn both the starting point and the step-size for each coordinate for
the within-task algorithm. This is the main improvement over the methods suggested in
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Denevi et al. (2019a) and Denevi et al. (2019b) where they only learn the starting point
µ. Finally, even if it returns the full primal and dual updates sequences (αi)

n
i=1 ∈ Rd×n,

(mi)
n
i=1 ∈ Rd×n which can be memory inefficient if n and d are large, we will see that to

run the full algorithm we only have to store a summary statistics of them of dimension d,
so that the full algorithm stays memory efficient.

4.3 Meta algorithm

The sequence of losses we feed to the meta algorithm is (Lt)t≥1, where,

Lt(µ, v) = min
m∈Rd

1

n

n∑
i=1

`t,i(m) + λψµ,v(m)

= min
m∈Rd

1

n

n∑
i=1

`t,i(m) + λ

d∑
i=1

{
(mi − µi)2

2vi
+ vi

}
.

(4.5)

To run an Online Mirror Descent on (Lt)t≥1 we need (approximate) subgradients. The
next proposition is a consequence of Proposition 3.2 that shows how to build approximate
subgradients for Lt.

Proposition 4.4 (Approximate subgradient for 2OGD). Let (αt,1, . . . , αt,n) ∈ (Rd)n be
the sequence of dual updates obtained after running Algorithm 5 on Zt with meta pa-
rameters (µ, v), and (mt,1, . . . ,mt,n) ∈ (Rd)n is the primal sequence. Then ∇t

∗ is an
(εµ,v/n)-subgradient of Lt(µ, v) where,

∇t
∗ = (∇t

µ,∇t
v), ∇t

µ =
1

n

n∑
i=1

αt,i, ∇t
v = − 1

2λ

(
∇t
µ

)2
+ λ1d, (4.6)

where the square is applied component-wise and

εµ,v = −
n∑
i=1

{`t,i(mt,i) + λψµ,v(mt,i)}+ nLt(µ, v) +
‖v‖∞

2λ

n∑
i=1

1

i
‖αt,i‖2

2 . (4.7)

Under the assumption that `t,i are L−Lipschitz w.r.t Euclidean norm, the norm of the
meta subgradient is bounded by a constant (that depends on λ),

‖∇t
∗‖2

2 = ‖∇t
µ‖2

2 + ‖∇t
v‖2

2 ≤ L2 +

(
L

2λ
+ λ
√
d

)2

. (4.8)

Proof. Let (µ, v) ∈ Rd × Rd
++, we apply Proposition 3.2 to build a sub-gradient of Lt at

(µ, v). For α ∈ Rd×n we denote by αi its i−th column i ∈ {1, . . . , n}. If 1n is the vector
of Rn full of ones,

∑n
i=1 αi = α1n. For a vector x of Rd, the notation x2 refers to the
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vector y such that yi = x2
i , i ∈ [d] (i.e. the square is applied component by component).

By Proposition 4.2, for all α ∈ Rd×n,

D̂t,n+1(α, (µ, v)) =
n∑
i=1

`∗t,i (αi) + λnψ∗µ,v

(
− 1

λn

n∑
i=1

αi

)

=
n∑
i=1

`∗t,i (αi) +
1

2λn

〈
(α1n)2 , v

〉
− 〈α1n, µ〉 − λn

n∑
i=1

vi.

(4.9)

Dn+1(α, (µ, v)) is differentiable in (µ, v),

∇µ = ∇µ

{
−D̂t,n+1(α, (µ, v))

}
/n =

α1n
n

∇v = ∇v

{
−D̂t,n+1(α, (µ, v))

}
/n = −(α1n)2

2λn2
= − 1

2λ
(∇µ)2 + λ1d.

(4.10)

The square is applied component-wise on α1n. We get the approximate meta subgradients
by Proposition 3.2. The expression for εµ,v follows from Proposition 3.1, in the Gaussian

Mean Field setting ψµ,v is

(
max
j=1,...,d

vj

)−1

−strongly convex with respect to the Euclidean

norm (Proposition 4.1). If for all t ≥ 1 and i ≥ 1, `t,i is L−Lipschitz with respect to
the Euclidean norm, it implies ‖αt,i‖2 ≤ L. To bound the subgradient of µ, we use the
triangular inequality,

‖∇µ‖2 =
1

n

∥∥∥∥∥
n∑
i=1

αt,i

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

‖αt,i‖2 = L. (4.11)

To bound the subgradient of v, notice that for any two vectors x, y ∈ Rd, such that yi = x2
i

for all i ∈ [d], ‖y‖1 = ‖x‖2
2, therefore using the triangular inequality and ‖.‖2 ≤ ‖.‖1,

‖∇v‖2 ≤
1

2λ
‖(∇µ)2‖2 + λ

√
d ≤ 1

2λ
‖(∇µ)2‖1 + λ

√
d

=
1

2λ
‖∇µ‖2

2 + λ
√
d

≤ L2

2λ
+ λ
√
d.

(4.12)

Comments on the meta subgradient and its bound. To build the meta subgra-
dients we only need to store the sum of the dual iterations of the within-task algorithm∑n

i=1 αt,i. Therefore we only have to store d parameters which is not too memory hungry.
Let us note that the derivation of the meta subgradient does not depend on the choice of
the meta regularisation function φ, it only depends on the within-task dual iterates and
the inner regularisation function ψµ,v. We also stress that the bound of the meta gradient
depends on λ.
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Meta algorithm. The second ingredient for the meta Online Mirror Descent is the gra-
dient of the Fenchel transform of the regularisation function φ. We apply Proposition A.4,

φ∗(α, β) =
s2

2
||α||22 +

s2

2
||β||22 + s2

d∑
j=1

βj

∇αφ
∗(α, β) = s2α ∇βφ

∗(α, β) = 1ds
2 + s2β

∇αφ
∗(0) = 0 ∇βφ

∗(0) = s21d

(4.13)

The update is given by,

(µ1, v1) = ∇φ∗ (0, 0) = (0, s21d)

(µt+1, vt+1) = ∇φ∗
(
−1

η

t∑
j=1

(∇j
µ,∇j

v)

)

=

(
−s

2

η

t∑
j=1

∇j
µ, s21d −

s2

η

t∑
j=1

∇j
v

)

=

(
µt −

s2

η
∇t
µ, vt −

s2

η
∇t
v

)
∀t ≥ 2

(4.14)

We use a double Euclidean regularisation for the parameters µ and ν, therefore the algo-
rithm is an Online Gradient Descent on both µ and v. The within-task algorithm is also
an Online Gradient Descent (on the regularized losses but it is still OGD), therefore we
name the full algorithm 2OGD for Double Online Gradient Descent. For each dataset Zt,
µt sets the starting point of the within-task descent and vt sets the stepsize of the within
task descent coordinate by coordinate. The meta algorithm is given in Algorithm 6.

Algorithm 5: Within-task for GMF

Input: (µ, v) ∈ Rd × Rd
++, λ > 0, task

Zt
Init: m1 = µ
Loop for i← 1, . . . , n do

Receive `i, suffer `i(mi)

receive a subgradient
αi ∈ ∂`i (mi) ⊂ Rd

mi+1 = mi − v
λi

(
αi + λ

v
(mi − µ)

)
Return: ᾱ = (αi)

n
i=1 ∈ Rd×n,

(mi)
n
i=1 ∈ Rd×n

Algorithm 6: Meta algorithm for GMF

Input: s > 0, η > 0
Init: µ1 = 0, v1 = s21d ;
Loop for t← 1, . . . , T do

Receive incrementally the dataset Zt

run Algorithm 5 with (µt, vt) over Zt

Compute ∇t
∗ = (∇µt ,∇vt) as in

Proposition 4.4

µt+1 = µt − s2

η
∇µt

vt+1 = vt − s2

η
∇vt

Return: (µt, vt)Tt=1
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4.4 Regret Bound

Theorem 4.1 (Regret bound for 2OGD). Under the assumptions stated in Table 3.2 and
the assumption that the `t,i are L−Lipschitz w.r.t Euclidean norm and if

∑T
t=1 ‖vt‖∞ =

O(T ), there exists C1, C2 and C3 constants such that,

T∑
t=1

n∑
i=1

`t,i(mt,i) ≤ inf
v̄∈R++

(m̄t)Tt=1∈(R)T

T∑
t=1

n∑
i=1

`t,i(m̄t) + C1nT
3/4
{
‖ ¯̄m‖2

2 + v̄2
}

+ C2T
√
n log(n)

(
σ2
m̄

v̄
+ v̄

)
+ C3T

√
n log(n).

(4.15)

where ¯̄m :=
∑T

t=1
m̄t
T

and σ2
m̄ :=

T∑
t=1

‖m̄t − ¯̄m‖2
2

T
. As a result, if (m̄t)

T
t=1 ∈ (R)T minimises

the term
∑T

t=1

∑n
i=1 `t,i(m̄t), we have the regret bound,

Rmeta

(
(Z)Tt=1

)
≤ O(nT 3/4) +O(T

√
n log(n)) + σ2

m̄O(T
√
n log(n)). (4.16)

Proof. To get the regret bound of the full algorithm, we apply Proposition 3.3. φ is
s−2−strongly convex with respect to the Euclidean norm and ψµ,v is ‖v‖−1

∞ strongly convex
with respect to the Euclidean norm. Thus,

T∑
t=1

n∑
i=1

`t,i(mt,i) + λψµt,vt(mt,i) ≤ inf
(µ,v)∈Rd×Rd++

(m̄t)Tt=1∈Rd×T

nT

{
1

nT

T∑
t=1

n∑
i=1

`t,i(m̄t)+

η

T
φ(µ, v) +

λ

T

T∑
t=1

ψµ,v(m̄t) +
1

2nλT

T∑
t=1

‖vt‖∞
n∑
i=1

||αt,i||22
i

+
s2

2ηT

T∑
t=1

||∇t
∗||22
}
.

(4.17)

Since ψµt,vt is always positive we can withdraw it from the left hand side. Then, the `t,i
are L-Lipschitz which implies ‖αt,i‖2 ≤ L, for all (t, i) ∈ [T ]× [n], therefore,

n∑
i=1

||αt,i||22
i
≤ L2(1 + log(n)).

And in Proposition 4.4 we proved ‖∇t
∗‖2

2 ≤ L2 +
(
L
λ

+ λ
√
d
)2

. By plugging the gradient
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bounds and the values of the regularisation functions, it leads to,

T∑
t=1

n∑
i=1

`t,i(mt,i) ≤ inf
(µ,v)∈Rd×Rd++

(m̄t)Tt=1∈Rd×T

T∑
t=1

n∑
i=1

`t,i(m̄t) +
nη

2s2

{
‖µ‖2

2 + ‖v − s21d‖2
2

}

+ nλ
T∑
t=1

{
d∑
i=1

(m̄t,i − µi)2

2vi
+ vi

}
+
L2(1 + log(n))

2λ

T∑
t=1

‖vt‖∞

+
nTs2

2η

(
L2 +

(
L

λ
+ λ
√
d

)2
)
.

(4.18)

Take µ =
∑T

t=1
m̄t
T

=: ¯̄m, v = v̄1d, v̄ ∈ R++ and use the notation σ2
m̄ :=

∑T
t=1

‖m̄t− ¯̄m‖22
T

,

T∑
t=1

n∑
i=1

`t,i(mt,i) ≤ inf
v̄∈R++

(m̄t)Tt=1∈(R)T

T∑
t=1

n∑
i=1

`t,i(m̄t) +
nη

2s2

{
‖ ¯̄m‖2

2 + d(v̄ − s2)2
}

+ nλT

(
σ2
m̄

2v̄
+ dv

)
+
L2(1 + log(n))

2λ

T∑
t=1

‖vt‖∞ +
nTs2

2η

(
L2 +

(
L

λ
+ λ
√
d

)2
)
.

(4.19)

We take λ = max

(
T−1/4,

√
log(n)
n

)
and η =

√
T
λ

. Notice that λ−1 ≤ min

(
T 1/4,

√
n

log(n)

)
.

We make the hypothesis that
∑T

t=1 ‖vt‖∞ = O(T ), so that we can find K ≥ 0 such that∑T
t=1 ‖vt‖∞ ≤ KT . It leads to,

T∑
t=1

n∑
i=1

`t,i(mt,i) ≤ inf
v̄∈R++

(m̄t)Tt=1∈(R)T

T∑
t=1

n∑
i=1

`t,i(m̄t)

+
1

2s2

{
‖ ¯̄m‖2

2 + d(v̄ − s2)2
}

min

(
nT 3/4, n

√
Tn

log(n)

)

+

(
σ2
m̄

2v̄
+ dv̄

)
max

(
nT 3/4, T

√
n log(n)

)
+
KL2

2
min

(
T 5/4 log(n), T

√
n log(n)

)
+ Cs2 min

(
nT 3/4, n

√
Tn

log(n)

)
.

(4.20)

where C is a constant that depends only on L and d. There are now two ways to formulate
the bound. We place oursevles in the regime where n� T , C1, C2 and C3 are quantities

Chapter 4. A Practical Algorithm in the Gaussian Mean Field setting 37



Master’s Thesis 4.4. Regret Bound

that do not depend on n, T , v̄ and (m̄t)
T
t=1,

T∑
t=1

n∑
i=1

`t,i(mt,i) ≤ inf
v̄∈R++

(m̄t)Tt=1∈(R)T

T∑
t=1

n∑
i=1

`t,i(m̄t) + C1nT
3/4
{
‖ ¯̄m‖2

2 + v̄2
}

+ C2T
√
n log(n)

(
σ2
m̄

v̄
+ v̄

)
+ C3T

√
n log(n).

(4.21)

Take (m̄t)
T
t=1 ∈ (R)T such that they minimise the term

∑T
t=1

∑n
i=1 `t,i(m̄t) and take any

v̄ ∈ R++,

Rmeta

(
(Z)Tt=1

)
≤ O(nT 3/4) +O(T

√
n log(n)) + σ2

m̄O(T
√
n log(n)). (4.22)

Comment on the bound. The meta regret bound is to compare with Independant
Task Learning (ITL) where each task is trained in isolation. Running an Online algorithm
for each task generates a regret in O(

√
n). Therefore training on T tasks in isolation gives

a regret in O(T
√
n). Our bound is sublinear in NT but admits a worse regret than

O(T
√
n) showing no improvement over ITL). This source of suboptimality could either

come from the choice of regularisation functions (as we did not use Kullback Leibler
divergenes that is natural to compare distributions) or the proof technique.
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Chapter 5

Conclusion
Our objective was to present a theoretically grounded framework for Meta Learning in
the online setting. We successfully introduced a general algorithm in Chapter 3 for vari-
ational learning as an extension of an existing frequentist approach. Its current practical
implementation is suboptimal as it leads to a worse regret bound than the Independent
Task Learning. However, we stress that it does not mean that the underlying algorithm
is not worth considering. It is likely that the source of suboptimality in the bound comes
from the proof technique and we conjecture that it can be improved.

It lefts the door open for many improvements. For example, the choice of the regularisation
functions is subject to discussion, it is still not clear what should be the best configuration
in the Gaussian setting. We have two options to improve them, either we find a better
configuration or we find a way to use the Kullback-Leibler divergence despite the violated
convex assumptions. Another interesting direction is the Natural Gradient formulation
of Variational Inference. When the variational family is exponential, the parametrisation
with the natural parameter leads to a Natural Gradient Descent which is a Gradient
Descent locally pre-conditioned by the inverse of the Fisher Information Matrix. The
Fisher Information Matrix is hard to get in high dimension but a recent breakthrough
was to use the expectation parametrisation instead of the natural parametrisation which
allows to avoid the computation of the Fisher Information Matrix and also connects the
process to a Mirror Descent Khan and Nielsen (2018). It scales well and gives better results
than standard Variational Inference. Unfortunately, the expectation parametrisation for
an exponential family is almost never convex so its theoretical analysis is still an open
question.

Among the questions we did not address was the question of when Meta Learning is
guaranteed to be helpful? For linear regression tasks, it can be shown that if their true
parameters lie close to each other, Meta Learning will win over Independent Task Learn-
ing. But for more complex models it is less clear. The regret for Independent Task
Learning is in O(T

√
N). Our dream regret bound for Meta Learning has the form

S × O(f(N, T )) + O(N
√
T ) where S is a coefficient that goes to zero when the tasks

share strong similarities and O(f(N, T )) is potentially worse than O(T
√
N). Therefore,

in the setting where the tasks share strong similarities (i.e. S ≈ 0) and N � T we have
an advantage with Meta Learning. The difficulty is to define S.

Last but not least, no numerical experiment has been introduced in the thesis. The
remaining month of the internship will be entirely devoted to them and to improve the
bound. We will experiment with 2OGD on simulated and real datasets. Hopefully, it will
lead to new hindsights to improve the algorithm.
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Appendix A

Technical Results

A.1 Tools

A.1.1 Convexity Results and definitions

Definition A.1. (strong convexity) Let µ > 0 and ||.|| an arbitrary norm on Rd, f :
Rd → R is µ−strongly convex w.r.t to ||.|| if and only if

f(x) ≥ f(y) + gT (x− y) +
µ

2
||x− y||2 ∀x, y ∈ Rd, g ∈ ∂f(y).

The following is also equivalent,

f(αx+ (1−α)v) ≤ αf(x) + (1−α)f(y)− σ

2
α(1−α)||x− y||2, ∀x, y ∈ Rd, α ∈ (0, 1).

Proposition A.1. µ > 0, f : Rd → R is µ−strongly convex w.r.t to the Euclidean norm
if and only if g(x) = f(x)− µ

2
‖x‖2

2 is convex ∀x. Hence, if f is twice differentiable, f is
µ−strongly convex w.r.t to the Euclidean norm if and only if λmin(∇2f(x)) ≥ µ.

Definition A.2 (Subdifferential). f : Rd → R, x ∈ Rd,

∂f(x) =
{
g ∈ Rd : f (x′) ≥ f(x) + 〈g, x′ − x〉 , for any x′ ∈ Domf

}
.

Proposition A.2. If g(x, y) is jointly convex on X ×Y then h(x) = inf
y∈Y

g(x, y) is convex

on X .

Proof. Let x, x′ ∈ Dom(h), x′′ := λx+(1−λ)x′, λ ∈ (0, 1), we show that h(x′′) ≤ λh(x)+
(1−λ)h(x′). By definition of the infimum, for all ε > 0, ∃y, y′ such that g(x, y) ≤ h(x)+ ε
and g(x′, y) ≤ h(x′) + ε. Then,

h(x′′) = inf
y∈Y

g(x′′, y)

≤ g(x′′, λy + (1− λ)y′)

≤ λg(x, y) + (1− λ)g(x′, y′) by joint convexity

≤ λh(x) + (1− λ)h(x′) + ε

(A.1)
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A.1.2 Fenchel Transform

Definition A.3 (Convex conjugate also known as the Fenchel transform). The Fenchel
transform of a mapping f : Rd → R ∪ {+∞} is

f ∗(α) = sup
x∈Rd
〈α, x〉 − f(x), ∀α ∈ Rd. (A.2)

Proposition A.3. If f is strictly convex, then f ∗ is differentiable and

∇f ∗(α) = arg max
x∈Rd

αTx− f(x), ∀α ∈ Rd. (A.3)

Proposition A.4 (Example: translated and rescaled Euclidean Norm).

f :Rd → R, x 7→ c

2
‖x− y‖2

2, c > 0, y ∈ Rd

f ∗ :Rd → R, α 7→ 1

2c
‖α‖2

2 + 〈α, y〉

Proof.

arg max
x∈Rd

αTx− f(x) = arg max
x∈Rd

αTx− c

2
||x||22 + cxTy

= arg max
x∈Rd

(α
c

)T
x− 1

2
||x||22 + xTy

= arg max
x∈Rd

−1

2
||y +

α

c
− x||22 = y +

α

c

Thus,

f ∗(α) = sup
x∈Rd

αTx− f(x) = (y +
α

c
)Tα− 1

2c
||α||22

=
1

2c
||α||22 + αTy

Taking c = 1 and y = 0, it shows that the Euclidean norm is self-dual.

A.1.3 Duality

A.1.4 f-Divergences and Kullback-Leibler Divergence

Divergences are common tools to compare probability distributions and the family of
f−divergences covers a large part of them.
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Definition A.4 (f−divergences). If (X ,F) is an arbitrary measurable space and P and
Q are two probability distributions on (X ,F) such that P � Q (i.e. P is absolutely
continuous with respect to Q, ∀A ∈ F , Q(A) = 0 =⇒ P (A) = 0). We define by
P(X ,F) the set of probability measures on (X ,F). Then, for a convex function f such
that f(1) = 0, the f -divergence of P from Q is defined as,

Df (P ‖ Q) ≡
∫
X
f

(
dP

dQ

)
dQ

Where dP
dQ

is the Radon-Nikodym derivative of P with respect to Q that exists since P � Q.

If P is not absolutely continuous with respect to Q, we set Df (P ‖ Q) = +∞.

Proposition A.5 (Positive definiteness of f -divergences). ∀P,Q ∈ P(X ,F)
Df (P ||Q) ≥ 0 and Df (P ||Q) = 0 ⇐⇒ P = Q

Proof. if P is not absolutely continuous with respect to Q, P 6= Q and Df (P ||Q) = +∞,
therefore the statement is true. If we assume P � Q, since f is convex, and Q is a
probability distribution by Jensen’s inequality,

Df (P ||Q) = EX∼Q
[
f

(
dP

dQ
(X)

)]
≥ f

(
EQ
[
dP

dQ
(X)

])
= f

(∫
X

dP

dQ
dQ

)
= f(P (X )︸ ︷︷ ︸

=1

) = 0

where we use the definition of the Radon Nikodym derivative: if P � Q, dP
dQ

is the (Q−a.e)

unique function such as P (A) =
∫
A
dP
dQ
dQ ∀A ∈ F .

If Df (P ||Q) = 0, the Jensen’s inequality is saturated, therefore dP
dQ

is equal to a constant

Q-a.e., integrating over X we get that the constant is equal to 1. Thus, ∀A ∈ F , P (A) =∫
A
dP
dQ
dQ =

∫
A
dQ = Q(A). It proves that P = Q.

If P = Q, it is straightforward to see that dP
dQ

= 1 Q-a.e satisfies the Radon Nikodym

definition and therefore since f(1) = 0, we have Df (P ||Q) = 0.

Definition A.5 (Kullback-Leibler Divergence). When f is the mapping x 7→ x log(x),
Df (P ||Q) := DKL(P ‖ Q) is the KL divergence

KL(P ||Q) ≡

{∫
dP
dQ

log
(
dP
dQ

)
dQ if P � Q

+∞ otherwise

Proposition A.6 (Kullback Leibler Divergence between Gaussian Distributions). If X ∼
Nd(µ1,Σ1), Y ∼ Nd(µ2,Σ2) and Σ1, Σ2 are non singular, then

KL(X||Y ) =
1

2

(
log
|Σ2|
|Σ1|
− d+ Tr(Σ−1

2 Σ1) + (µ2 − µ1)TΣ−1
2 (µ2 − µ1)

)

Thus if X ∼ Nd(µ1, Diag(σ2
1)), Y ∼ Nd(µ2, Diag(σ2

2)), σ1 ∈ Rd
++, σ2 ∈ Rd

++

KL(X||Y ) =
1

2

d∑
i=1

(
ln

(
σ2

2,i

σ2
1,i

)
− 1 +

σ2
1,i

σ2
2,i

+
(µ2,i − µ1,i)

2

σ2
2,i

)
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Proposition A.7 (Convexity for the Gaussian KL divergence). X ∼ Nd(µ1, Diag(σ2
1)),

Y ∼ Nd(µ2, Diag(σ2
2)), σ1 ∈ Rd

++, σ2 ∈ Rd
++. KL(X||Y ) is

(i) strictly convex as a function (µ1, σ
2
1) (but not strongly convex)

(ii) ‖σ2
2‖−1
∞ -strongly convex as a function (µ1, σ1)

(iii) not jointly convex as a function of (µ1, σ
2
1, µ2, σ

2
2) or (µ1, σ1, µ2, σ2) as it is not convex

in σ2 of σ2
2

A.2 Theorems

Theorem A.1 (Regret bound EWA, Theorem 1 in Chérief-Abdellatif et al. (2019)).
Assuming that the loss is bounded, i.e., 0 ≤ `i(w) ≤ B, ∀i ≥ 1, w ∈ Rd, the expected regret
has the following upper bound

n∑
i=1

Ew∼ρi [`i (w)] ≤ inf
ρ∈P(Rd)

{
Ew∼p

[
n∑
i=1

`i(w)

]
+
nB2

8λ
+ λKL(ρ, π)

}

If in addition `i is convex for all i ≥ 1, the cumulative regret has the following upper
bound when ŵi = Ew∼ρi [w] is the posterior mean,

n∑
i=1

`i (ŵi) ≤ inf
ρ∈P(Rd)

{
Ew∼p

[
n∑
i=1

`i(w)

]
+
nB2

8λ
+ λKL(ρ, π)

}
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