Hi, welcome to my homepage.

I am a third year PhD student in the Gatsby Computational Neuroscience Unit at UCL and an ELLIS PhD student.

Previously, I was a research assistant at the Istituto Italiano di Tecnologia in the Computational Statistics and Machine Learning team in Genoa, working with Massimiliano Pontil and Carlo Ciliberto. From May 2020 to November 2020, I was a (remote) research intern with Pierre Alquier and Emtiyaz Khan in the Approximate Bayesian Inference Team of the RIKEN Center for Advanced Intelligence Project in Tokyo.

I graduated the Master MVA (Machine Learning and Computer Vision) from ENS Paris Saclay and obtained the engineering degree of ENSAE specialising in Statistics.

Submitted preprints


  • Li Z.*, Meunier D.*, Mollenhauer M., Gretton A., Optimal Rates for Regularized Conditional Mean Embedding Learning, 2022, to appear in Advances in Neural Information Processing Systems 36 (NeurIPS) as an oral presentation. Available on arXiv:2208.01711. (* Equal contribution)
  • Distribution Regression with Sliced Wasserstein Kernels. Meunier, D.; Pontil, M.; Ciliberto, C. Proceedings of the 39th International Conference on Machine Learning (ICML), Proceedings of Machine Learning Research, 2022, vol. 162, pp. 15501–15523. Available on arXiv:2202.03926.


Master’s Thesis


  • Advanced Topics in Machine Learning, Kernel Methods - Computational Statistics and Machine Learning MSc - UCL - Fall 2022 & 2023 with Arthur Gretton
  • Introduction to stochastic processes - Graduate (M1) - ENSAE Paris - Fall 2020 with Nicolas Chopin
  • Tutor for first year students in Linear Algebra and Functional Analysis - Université Paris Dauphine - Fall 2017


  • MSc in Statistics & Machine Learning, ENS Paris-Saclay, 2019-2020
  • MSc in Statistics & Economics, ENSAE Paris, 2018-2020
  • BSc in Mathematics, Université Paris Dauphine, 2014-2018

Reading groups

  • PIMS online graduate course on Optimal Transport + Gradient Flows, Fall 2023
  • Organiser of the Machine Learning Journal Club at Gatsby CNU, UCL, 2022-2023
  • High-Dimensional Probability: An Introduction with Applications in Data Science, Roman Vershynin - January 2023 - March 2023
  • Introductory Functional Analysis with Application, Erwin Kreyszig, June 2022 - December 2022
  • Learning Theory from First Principles, Francis Bach, April 2021 - September 2021